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OSCILLATORY CONFLICT-CONTROL PROCESSESY
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Some quasi-linear dynamical processes functioning under conditions of conflict {1, 3-8] are considered,
on the assumption that Pontryagin’s condition [1] holds only in certain intervals of the real half-line
(this may occur, in particular, when a homogeneous system is performing periodic oscillations {2]). The
method of resolvent functions [3, 4] is used to establish sufficient conditions for the group pursuit
problem [3, 4] to be solvable. A typical special case is examined and the group pursuit problem is
solved for a second-order system [6]. The results have a bearing on the research reported in [3-5].

1. STATEMENT OF THE PROBLEM

SurposE the state of a process z=(z, ..., ), z €R", in the space R" is described by the
differential equations

7, = Az, + @;(u;,v), wel;, veV (1.1)

where A, are square matrices of order n;, ¢,(u;, v) are jointly continuous vector-valued
functions, and U, and V are non-empty compact sets (i=1, 2, ..., v throughout, unless stated
otherwise).

The terminal set M is the union of sets M,*, ..., M *, each of which can be expressed as
M*=M"+ M, where M are linear subspaces of R™, and M, are convex closed sets in the
L,-orthogonal complements of M in R™

A trajectory of the conflict-controlled process (1.1) in state z°=(2], ..., z°) may be brought
to the terminal set M at an instant of time T(z°) if measurable functions u,(t)=u,(z’, v,())
exist, where v,()={v(s): s€[0, 1)}, t€[0, T(z%)], with values in U, such that for at least one
i: z(T(z")) e M, * and any measurable function v(t), £ €[0, T(z%)], it is true that W) eV.

Our goal is to establish sufficient conditions, in terms of the parameters of process (1.1), to
guarantee that the problem of bringing a trajectory to the terminal set in finite time is solvable.

2. AUXILIARY RESULTS

The proofs of the following results, which we shall need later, may be found in [8-12].

Let K(R") be the space of all non-empty compact sets in R". We will define a Hausdorff
metric in this space [9].

If X, YcK(R") and S is the unit sphere about zero in R, then dist(X, Y)=
minfA=0: X cY+AS, ¥ c X +AS].
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A multiple-valued map A(x), A: X5 K(R"), XcdomA={x, A(x)#0} is upper semi-
continuous at a point x, € X, if, for every €>0, there exists & >0 such that if llx—-x,ll<$, then
A(x) = A(x,) +¢S. If a map A (x) is upper semi-continuous at each point of a set X, it is said to
be upper semi-continuous on X. Given a set X, X c K(R"), we define the cone con X ={z:
z=2Ax, x€ X, A>0}, and let conX denote the closure of con X.

Lemma 1 [8]. Let X, Y, M c K(R"); assume that A(x, y), A: X*Y — K(R"), is an upper
semi-continuous (multiple-valued) map and f(x), f: X — R", a continuous function such that
f&xX)NnM =0 forany xe X, yeY. Then the function a(x, y), a: X *Y — R', defined by a(x,
y)=max{o=0: oM - f(x))n A(x, y)=#0} is upper semi-continuous.

Lemma 2 [10]. Let X ¢ K(R"); assume that T(x), T: X - K(R"), A(x) A: X - K(R") are
upper semi-continuous (multiple-valued) maps and f(x, y), xe X, ye A(x), f(x, y)eR" is a
continuous function. Then the multiple-valued map C(x)={ye A(x): f(x, y)eT(x)} is upper
semi-continuous.

We shall say that a multiple-valued map A(x), A: X - K(R"), is Lebesgue (Borel)
measurable if X is a Lebesgue- (Borel-)measurable set and, for any Y c K(R"), the set
{xe X: A(x)c Y} is Lebesgue (Borel) measurable. To simplify the terminology, we shall call
Lebesgue-measurable maps simply measurable, and refer to Borel-measurable maps as Borel
maps.

Lemma 3 [11]. Let X ¢ K(R"); assume that T(x), T: X = K(R"), A(x), A: X - K(R"), are
measurable (Borel) multiple-valued maps and that the function f(x, y), xe X, ye A(x), fix,
y)e R", is measurable (Borel) as a function of x and continuous as a function of y. Then the
multiple-valued map C(x)={ye A(x): f(x, y)eT(x)} is measurable (Borel).

Let X < K(R"); let X, be the set of vectors x € X whose least component is their first one,
X, the set of xe X, whose least component is the second one, and so on, up to X,. The set
X, clearly consists of a single point x*. Then x* is called the lexicographic minimum of X; let
x*=lexmin X.

A selector of a multiple-valued map A(x), A: X — K(R"), is a single-valued function a(x)
such that a(x) e A(x) for all xe X.

Lemma 4 [12]. Let X c K(R"), and let A(x), A: X — K(R") be a measurable (Borel) map.
Then the selector a(x)=lexmin A(x), x € X is measurable (Borel).

Lemma 5 [9]. Let X, Y, ZcK(R"); let ¢(y), ¢: Y—>Z be a Borel function and y(x),
y: X — Y, a measurable function. Then the function y(r) = ¢()(x)), ¥: X — Z is measurable.

3. SCHEME OF THE METHOD

Let m, denote the orthogonal projection operator from R" on to the subspace L,. Using the
functions W, u;, v)=n®,()9;, v), 1=0, y €U, veV (where @(f)=exp(t4)), we define
multiple-valued maps

M(t9u)= U ‘Vi(t9u£’v)9 “’:(t)‘: n“’:(t’v)
wel; veV

Pontryagin’s condition means that W(r)#0 for all t=0. We shall adopt certain rather
weaker assumptions [13].

Condition 1.
dom W, (1) = {kUO (35413541 1}* o =0.1) <ty

forall j=0,1,2,....
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Put

A= ka (taptrgn) AL= ka(‘észfnz)

Condition 2. Borel multiple-valued maps Q,(t), Q,: A. — K(L,) exist, such that
1. we have

ryma,w+ga»¢®

forall te A and
2. we have

%2 éil
| o@dic Twwa
N

éhl
forall k=0,1,2,...
Define times
i . ’;h 3 +
Fg =max| 1< thy: ] QWdre | Wi(ndr 3.1)
l2'.l'+l 4

k=0,1,2,....
Fix te[0, +o). For every i there exists an integer p,=0 such that telt;,, 1;,,] or te(t, .,
t;mz)' , . . -
For i such that teff;,, 1,.,], we define sets A_(f), Ay(r), A, (1) by
i ! i i i pit i =i
AL()= :00 (t-tapszot — )y Do) = t!() {t—typpt —typp]
xi -t - i i
AL(n= kL_JO (1 =Tyt = 13) V10,0 = 13, 4]
For i such that € (z},,.,, 1,,,), we define sets Ay(t), (1), A,() by
i ki i i i
A= :Uo (t=tapagot =t DUIO 1~ 15 44 ]
. i i - o pi-1 . .
o)) = ,go[t =hpsst ~ bl B0 = kL-JO (t = bpprst = 12)

For fixed ¢, 1> 0, we let

L= {Y;(-): Y,t-t)eW,(t~1),T€ A+(1)}

Y (t-1)=0,1€[0,]\ AL (1)

denote the set of Borel selectors of the map W(—1), t=1=0. Set ¥O=70, ..., 0O
rQ) =00, ..., LO).

Fixing some Borel selector y()) e I'(t), we put

£ 27; () = Ty ()7 + [, - D) 32)
4]
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We now define the resolvent functions

u;(I,T»Z;,U,'Y:('))r-
supfp = 0: W (1 —7,0) - ¥, (t = DNWM; = §;(1,2,7;())) # ¢]

={1e A (1) . €2
0,te[0,]\AL()
Set
H(t,T,2,0,7 (),0) = X o (4,7,2;,0,Y:())
i=]
ael= {a: a=(q,...,a,)0; =0, i o; = 1}
i=1
and define a time
T(z,7()) = min{, =0:1- inf  max[u(1,7,2,0(7),7(),@)dT=< 0} G4
v(-)eQy ael

Q, ={v(): u(t)eV, 1=0, v(t) is a measurable function}.

If £, z, v.())e M, the resolvent function u(t, 1, z, v, ¥(-), @) is finite for any values of the
arguments, and by Lemma 1 it is Borel with respect to v, 1, t. Consequently, u(z, t, z, v, y(-), o)
is an integrable function in any finite interval.

If an i exists such that at time ¢* we have E,(t*, z, v,())eM, and o, #0, then p(t*, 1, z, v,
¥(-), &)=+eo for any t, v. Using the fact that the integral of a function that equals +< in a finite
interval is also equal to +o, we deduce that inequality (3.4) is automatically true, so that
*=T(z, ¥(-)).

4, MAIN THEOREM

Theorem 1. Suppose that the conflict-controlled process (1.1) is in its initial state z° and that
conditions 1 and 2 are satisfied; suppose, moreover, that Borel selectors y'(t—1), Y/(¢t-1)e
I(t), t=1=0 exist, such that T(z°, ¥°())<+e. Then the trajectory of the process may be
brought to the terminal set M at time T(z°, Y°()).

Proof.Put T(Z°, Y°())=T. Let v(71) e Q,.
Let us assume that §(T, z), v/())&M, forall i=1,2,...,v. Define the test function as
follows:

o(T,,2°,v(), ' () =1- max } w(T,7,2%, v(1), Y’ ()7
ae 0

Since o(T, 0, 2°, (), ¥°())=1 and o(T,¢, 2, v(), ¥°()) is a continuous decreasing function
of ¢, it follows from (3.4) that a time #.: O0<t <T exists such that o(7, ., 2°, v(), ¥°())=0.

We choose controls (1), u(t)eU, for 1€[0, ] as follows.

1.Let te X (T)nI[0, &].

Consider the multiple-valued map defined by

Ul (t,v) = {u; eU;: W(T - 1,u;,0) -
-y (T -1)ep (T, 1,20, 0.9 O)YM; —E(T. 20, Y ()}

Remembering our assumptions about the parameters of the process (1.1), we may conclude
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that W(T —1, &, v)—y (T —1) is a Borel function of T and a continuous function of u,, and that
the multiple-valued function

BT, T, 22,000, ¥ (M, ~ E(T, 20 .y? (D]

is a Borel function of t, v, since by Lemma 1 p (7, t, ¥, v, ¥%()) is an upper semi-continuous
function of v.

By Lemma 3, Uj(z, v) is a Borel function of v, 7. Starting from the multiple-valued map Uj(t,
v) we consider the selector #(z, V) =lexmin¥{(t, v).

By Lemma 4, #(t, v) is a Borel function of 1, v

We now define the control u/(z) for 1e A (1[0, &] to be w(t)=:(r, v(1)). Then, by
Lemma S, i,{t) is tneasurable.

2. Let « € A (T). We form the multiple-valued map

Ui (t.v)={u; e U;s W (T ~tu;,0) € ~Q:(T — 1)}

By condition 2 and Lemmas 2 and 3, Ui(r, v) is a non-empty Borel function of T and an
upper semi-continuous function of v.

Define (v, v) =lexminUj(t, v) and define the control (1) for 1€ A (T) to be wi(x, v(1)).

As in case 1, one shows that u,(t) is a measurable function of t for ve A (7).

Put

P~lhxas
Moa @O, V)= [WT 1, u(®) ~=Ndt, k=p,—1, ...,0.

T
For isuch that t (1}, .., 1),..), if k= p,, we obtain
T4

Nopr (), V() = fW,-(T (), v(v))dr.

3. Let te (7). Then teft~t,,,. -], where k=p,— ., O for i such that T e{4,.
ti,nhand k=p,, ..., Ofor isuchthat Te(t, . 1},.;)-
By the definition of u(1), for te A (T)

4O, VOV | QT =D

Ttire
. 4.1)
"'ﬂ‘zm: (ui(')’ ‘0(')) € Q,(T - T) dt
It follows from (3.1) and (4.1) that
Ttaar
“Noean (0D, V() JW(T-1)dr (42)

T—thras

By (4.2), a Borel selector #;,,,(7—1) of the map W(T —~1), t€(T ~1lh,.» T —1i,,) exists, such
t

T-Taa

;:Zk»-j (T - t) dv= “ﬂ;mx (“s‘ () > 1")) -

Tt
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For those i such that T € (ty, ., 4,.,), we have k=p, ...,0.

For those i such that T e(t,,, 4,,,,), we have k=p,-1,...,0.

Define h'(T —1) = hy, (T —1) for all k.

Thus, the function A'(T -1) has been defined for all te A’ (f). We now form the multiple-
valued map

Ui(t,0) = {u; € U Wi(T - t,u4;,0) = h (T - 1)}

By Lemmas 2 and 3, U;(z, v) is a Borel function of t and an upper semi-continuous function
of v.

Put u3(1, v)=lexminUj(t, v), and define the control u(t) to be wui(t, v(z)).

By Lemmas 4 and 5, we see that u,(t) is a measurable function of 1 for 1t e Ay(T).

4.Let 1€ A (T)N|t., T]. We form a multiple-valued map

Ul(r,0)={u; e U Wi(T - 1,4;,9) = Y (T = 1)}
Define u,(t, v)=lexminUj(t, v), and define the control u,(t) tobe wui(z, v(1)).

As in case 3, one shows that u,(t) is a measurable function in the interval te &, (T)N [z, T1.
By Cauchy’s formula

T
nz(T) = m®(T)2! + [W(T -, u(x), w(x)dr. 43)
0
Taking the definition of the control u,(t) for e A_(T) and 1€ A(T) into account, we obtain

T_]’kilv,.(T (), W)dts W1, 1), we)de=0 (44)

i 'l
Ttz T3k

forall k=p,-1,...,0. _
For isuch that T e(t;,,.,, t;,.,) when k= p,, we obtain

| 3l
T T-in

[WT - @), v+ (W -1, u(o), wde=0 (45)

T-';m»l

By the method of resolvent functions [3], we see that for 1€ A,(T)
Wi(T - 7,u;,(0), 0(0) = 7 (= T) € W (T, 0.2, 0(D Y] ONM; - §,(T, 20, 7] )] (4.6)
Taking into account that the functions
Wi(T -t (0,0(1), ¥ (T -1 w(Tnz,01), 1)

are measurable with respect to t, we deduce from (4.6) that

[WAT =1, w(®), W)dre[M,-E(T, 2, '] (T, % 2, Wx), Q)+ [T -)de
(D) &M A
4.7

Noting that yX(T-1)=0 and w(7, 1, 2/, v(1), ¥'())=0 for 1[0, TI\A(T), and using (4.4)
and (4.5), we can write (4.7) in the form
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T T T
[WAT =1, w(x), WD)dre[M,-E(T, 2, O] [u(T, 1, 2, v1), ¥)O)de+ [¥(T -v)dr
[ 0 0 ( 4.8)

The test function o(7, 7, z°, v(-), ¥(-)) vanishes by the definition of the controls u,(7), i.e. an
index i, exists such that

1- [, (T, 7, 23, 9(1), Yi())de =0 (4.9)

It follows from (3.2), (4.3), (4.8) and (4.9) that

0

Let us consider the case when &, (T, z, 71(-))eM,a for some number i,, We then define the
control u, (), u, (t)eU, t€[0, 7] as follows:

¥ (1,0(1)), TE A‘:S (T)
U, (1) = ugl (1.0(1), TEAYT)
u? (7,0(1)), TeAYUT)

It follows from (3.2) and (4.3) that in this case ©_z)(7) € M, also. This proves the theorem.

5. MODIFIED METHOD

We shall now examine another approach to the solution of our problem.
We introduce multi-valued maps

vVi(t’ T ‘D) = “id)i(t - T)(pl(Ui' ‘D) - mi(ti T)Mi
. (1)
Wi, =W, 1, V), 0, 19=0, fo, Hdi=1

Condition 3.

dom Wi, ,)=kGA"(k,t), for all 1= 0,7e[0.)
=0

(26,11, 1€y, biy)
A'(k, )=t tag)s 1= 154y
¢r < tZ‘k

Define sets &' (k, ) and A, (k, ?) by the formulae

‘ ( “'2'&2»’ ~bLin) 1= t2ik+2 ‘ 52)
ALk, 1) =110,1 = 15,.,1), fre [t.2'k+l s fapea) )
9. t<typa
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[ =Lyespt =ty 12 ’2'.k+1 ‘
AL (k,0)=300,1~15,], te [12‘_,(,:2‘“,) (53)
P, [<ty,

Put k(t)=max[k=0: A_(k, 1) 20].
Now set

R k(1) . i ki(1)+1 i
A= U ALtk AL(D= U ALkr)
k=0 k=0

Condition 4. Borel multi-valued maps Q.(t, 1), O, : [0, +oo]*A_(¢) - K(L;) exist, such that
1. ()W, 1, v)+Qi(t, 7)) # D, for all Te A ().
veV

2. [Q@ vdic [W(, D, forall k=0,..., k).

A (k1) A, (k, 1)

Define the times

i = mv{fst;m : IQi(t’ ndic JW.-(t, T)dt

A (k1) L T8
Now set
o w2
. [t =ty arot = Tp b= 12 Do ()= U Ag(k,0)
Ao lk,1)= = (54)

0.1 <l3pey AL (= AL ()\ A ()

Put
; w.(t,7), AL @), .
Ly =470 rieneW @), e -"i(t) v,(") is Borel

Y:(6,7) =0, Tel0,]\A, (1),

Set

&, z,v.0))= 2,z +j7i(t’ vydt

sup[p = 0: ~p&, (1,2, 7: () € W (1,7,9) - 7,(1,7)
p,-(t,'t,z;,l),‘y,-()) =4T€ A;(’)
0,7 €[0,7]\ A’ (1)

i, 7, z,0,v0),00) = ):1 o (T, 2:,0,7:())

T(z, ()= min{t =0:1~- u(l%v rge%xj u, . z, o(1), v(), wydr<= 0}

Theorem 2. Suppose that the conflict-controlled process (1.1) is in state z° and that non-
negative Borel functions o,(t, 1), t=1=0, and Borel selectors y{(t, 1) e L}(f) exist such that
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T
T =T,,(2’, ¥°()) <+eo, jmi(T, dr=1.
0

Then the trajectory of process (1.1) may be brought to the terminal set M at time 7.
The proof is analogous to that of Theorem 1.

6. SPECIAL CASE
Let us consider the special case in which @, v)=1,~v, U,=pS, V=065, M;=¢S, n,=n.
Put £,(1, z, 0)=nd,()z.

Condition 5. A number p<+e: p=min{p>0: E(t+D, z)=&,(, z), Vz € R"} exists.
Condition 6.

domW,(1,t)= U Atk.r) 1=0,7€[0,1]

k=0
{t26.th 1€ty le01)
Ak, 1) =l taear)s 12 1gpy
(9> I <y

Condition 7. 0 €[0, p] exists such that 0 eintco§,(8, z,).
Using analogues of formulae (5.2)-(5.4), we define sets

A_(k,t), A (kt), Ag(k,t)

Let us write e,(t, z)=(-E,@t, 2))(1E(, z )", provided that £, z)#0

M) = [lolt-0)-pt-1)- 00, D}dr, k=k(@),...,0.

(k9
Set Q,,.,(t) =Ny, ()S. For m,,,, € Q,,.,(t), define functions
Bist (Marer) = (Raeas (0 = [Mapat DAUE (.20 D!
Provided that (M,,.., &(t, z)) <0, we have
Brert (Makes) = ((Mzar,€(6:20)) + Tar () = Mgy — €82 %
X(Magat € L2 DDUE( 2D, i (Myegrre,(6,2))>0
Brest(Maes) = ,é:, 0iB2se1 (Makst)
We form a muiti-valued map
O(z) = {0: 0 eintcok;(0,z))
By condition ©(z)#2. By condition 5, if 6, € ©(z), then for all k=0, 1, . . . , we have

{6, + kp} € 6(2).
Define resolvent functions by
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sup{ﬂf = Oz‘ﬂiéi(ﬁ Z,')E “’i(‘v T, D)L if TE 5_,({)

i{tv‘tszjsv= -
K ) {0, if zel0\NAL()

\i
pit,to,0) = Y, o;,(4,1,2,0)
i=]
For t € 6(2), we write

H
Alt,2)=1~ inf min max t, 7.2, 0(7),
(®.2) vy Mr+1€Q2k+1 (t)aeu{gu( % U )a)dt-e«éo Prra (M)

k=k(t),..,0

Finally, define a time T.%,(z)=min{t>0; 1€ ©(z): M, 2)<0}.

Theorem 3. Suppose that the conflict-controlled process (1.1) is in state z° and

1. conditions 5 and 7 are satisfied,

2. a non-negative Borel function (¢, ), t=1=0, exists such that conditions 6 and 4 are
satisfied.

Then the trajectory of the process may be brought to the terminal set M at a time 7 =T.}(z)
such that

T
jw(T, tdr=1, T<+oo,
¢

The proof relies on that of Theorem 1.

7. MODEL EXAMPLE

Consider the conflict-controlled process

i +4b%x =u, x.yeR", lull<20, lvliso

.1
¥+ bly=v

Changing variables in this second-order system by z{=y-x, z;=x, Z, =y, we obtain a system of type
(1.1) with

5 €R*™, z;=(2/,24,24,23), n;(zli,zzi,zé‘zj)z 2
After some calculations, we get
W(1,1,0)=b"'ol sin2b(1 - 1)l S - b~ v sinb(t = 1)l + ex(t, 1)S, v e 6§
W(t,7)= (b~ a(l sin2b(1 - 1)l ~| sinb(t - 1))+ e0(1, 7)) §
&:(4,2;,0)= 2 cos2bt — 25 (2b) ") sin2br + 2 (cos 2t ~ cosbr )+ 2 (b) ™ sin bt
As the map Qf(t, T) we take
0w, 1) =b ol sinb(t - )| ~I sin 2b(1 - 1)l ~ £0(1, 1)} §
Condition 2 will hold with Q(t, ) if

}{b"od sin2b(1 - T)l -Isinb(t =)y + eoo(r,1)}dT=0 forall 1=0 712
0
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This inequality and the definition (5.1) imply certain restrictions on €, depending on the time ¢. There
are three possible cases

1. t=2n(3b)"; e= o(4b*)"!

0, te[0,1-2n3b)Ju-r(2b),1]

D= {4b{| sinb(t - 1) -lsin2b( -}, Telr-2n(36)"1-n(2b)")

2. te(m2b)*, 2n(3b)™); &= (b)20(~cosbt— cos bt)

0, te(-n(2b) 1]

(= . . 2 8-l -1
b(l sinb(t - )l = sin2b(t - 7)) = (- cosbt —cos? br)™!, 1€[0,t-m(2b)7"]

3. te(0, m2b)™); €2 0; ot T)=(1)".

Theorem 3 implies that the time required to bring a trajectory of the process (1.1) to the terminal set,
that is, T =T,,(2), is finite, provided condition 7 holds for the initial states of the process and the
parameters T and ¢ satisfy the above constraints.
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