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Some quasi-linear dynamical processes functioning under conditions of conflict [l, 3-81 are considered, 

on the assumption that Pontryagin’s condition [l] holds only in certain intervals of the real half-line 

(this may occur, in particular, when a homogeneous system is performing periodic oscillations [2]). The 

method of resolvent functions [3, 41 is used to e&ablish sufficient conditions for the group pursuit 

problem [3, 41 to be solvable. A typical special case is examined and the group pursuit problem is 

solved for a second-order system [6]. The results have a bearing on the research reported in [S-S]. 

1. STATEMENT OF THE PROBLEM 

SUPPOSE the state of a process z = (zl, . . . , zJ, zi E R’+, in the space R” is described by the 
differential equations 

i;=AiZi+~pi(~i,~), UiEUi, u~V (1.1) 

where 4 are square matrices of order IZ~, cp,(u,, u) are jointly continuous vector-valued 
functions, and Ui and V are non-empty compact sets (i = 1, 2, . . . , v throughout, unless stated 
otherwise). 

The terminal set M is the union of sets Ml*, . . . , Mv*, each of which can be expressed as 
Mi* = Mf +M,, where M,? are linear subspaces of R+, and Mi are convex closed sets in the 
&-orthogonal complements of #’ in R”” 

A trajectory of the conflict-controlled process (1.1) in state z” =(z,“, . . . , 2) may be brought 
to the terminal set M at an instant of time T(z’) if measurable functions ui(f) = u,(z:, u,()) 
exist, where u,() = {u(s) : s E [0, r)), t E [0, T(z’)], with values in Vi, such that for at least one 
i : z,(T(z’)) E Mi * and any measurable function u(t), t E [0, T(z’)], it is true that u(t) E V. 

Our goal is to establish sufficient conditions, in terms of the parameters of process (l.l), to 
guarantee that the problem of bringing a trajectory to the terminal set in finite time is solvable. 

2. AUXILIARY RESULTS 

The proofs of the following results, which we shall need later, may be found in [g-12]. 
Let K(R”) be the space of all non-empty compact sets in R”. We will define a Hausdorff 

metric in this space [9]. 
If X, Y cK(R”) and S is the unit sphere about zero in R”, then dist(X, Y)= 

min(X30: XcY+U, YcX+U}. 
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A multiple-valued map A(x), A: X --+ K(Z?“), X cdomA =(x, A(x) +O) is upper semi- 
continuous at a point x, E X, if, for every E > 0, there exists 6 > 0 such that if Ii x - x, IIS 6, then 
A(x) c A&,,) -+-Es. If a map A(x) is upper semi-continuous at each point of a set X, it is said to 
be upper sea-continuous on X. Given a set X, Xc K(R’), we define the cone con X = (z : 
t = lx, x E X, h > 01, and let EZiX denote the closure of con X. 

~~~~u 1 f8]. Let X, Y, ~c~~~~~; assume that A@, y), A : X*Y --+ K(F), is an upper 
semi-continuous (multiple-valued) map andf(x), f : X -+R”, a continuous function such that 
f(x) nM = 0 for any x E X, y E Y. Then the function e$x, y), 01: X * Y -+ R’, defined by a(x, 
y) = max{u 3 0 : a@4 - f(x)) n A(x, y) + 0) is upper set-continuous. 

Lemma 2 [lo]. Let Xc K(R”); assume that T(x), T : X --+ K(F), A(x) A : X + KfR”) are 
upper set-continuous (m~tiple-valued maps and f(x, y), x E X, y E A(x), f(x, y) E R” is a 
continuous function. Then the multiple-valued map C(x) = {y E A(x) : f(x, y) E T(x)) is upper 
semi-continuous. 

We shall say that a multiple-valued map A(x), A: X + K(F), is Lebesgue (Borel) 
measurable if X is a Lebesgue- (Borel-)measurable set and, for any Y c K(F), the set 
{x E X : A(x) c Y) is Lebesgue (Borel) measurable. To simplify the terminology, we shall call 
~besgue-meas~able maps simply measurable, and refer to Borel-meas~able maps as Bore1 
maps. 

Lemma 3 [ll]. Let X t K(K); assume that T(x), T : X + K(P), A(x), A: X + K(R”), are 
measurable (Borel) m~tiple-valued maps and that the function f(q y), x E X, y E A(x), AZ, 
y) E R”, is measurable (Borel) as a function of x and continuous as a function of y. Then the 
m~tiple-valued map C(x) = {y E A(x) : f(x, y) E T(x)) is meas~able (Borel). 

Let X c K(F); let X, be the set of vectors x E X whose least component is their first one, 
X, the set of x E X, whose least component is the second one, and so on, up to Xn. The set 
X,, clearly consists of a single point x*. Then x* is called the lexicographic ~~~ of X; let 
x* = 1exminX. 

A selector of a multiple-valued map A(x), A : X -+ K(R”), is a single-valued function a(x) 
such that a(n) E A(x) for all x E X. 

Lemma 4 [12]. Let X c K(F), and let A(x), A : X -+ K(R”) be a measurable (Borel) map. 
Then the selector a(x) = lex~ A~~), x E X is measurable (Borel), 

Lemma 5 [9]. Let X, Y, 2 c K(F); let q(y), 9: Y +Z be a Bore1 function and y(x), 
y : X -+ Y, a measurable function. Then the function v(t> = ~~~)), v : X -+ 2 is measurable. 

3. SCHEME OF THE METHOD 

Let it, denote the orthogonal projection operator from R” on to the subspace I,*. Using the 
functions I%@, y, u) = ~i~i(f)~i(~i, u), t 3 0, tsi E Ui, ‘u EV (where ip,(t> = exp@AJ), we define 
multiple-valued maps 

H$(t,U)= !+__I ~(f,~j,U~, q(t)= ~~“~i(r,“) 
UjEUi 

Pont~agin’s condition means that q(r) # 0 for all t B 0. We shall adopt certain rather 
weaker assumptions [13]. 

Condition I. 

forall i=O,I,2 ,.... 
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Condifion 2. Bore1 multiple-valued maps Q(t), Q, : & 4 K(L,) exist, such that 
1. we have 

for all tub: and 
2. we have 

forall k-0,1,2,.... 
Define times 

k=O, 12 , ).... 

Fix t E [0, +=). For every i there exists an integer pi a 0 such that f E [t&, t&+l] or t E (f&,,+1, 

4,+2>. 
For i such that t E [f&, t&, 1, we define sets A\(t), d&,(t), a+(l) by 

For i such that t E ($.++I, t&,), we define sets A&t), d_(c), 8+(t) by 

A;(r)= k-t&++&+,]: Li;(l)=‘$ (f-?&++‘-11,) 
k=O k=O 

For fixed t, t > 0, we let 

I;:(l)= yi(‘): 
i 

Yi(t-2)E q(l-T),TEk!(t) 
yi(t-2)=O,~t[O,t]\~~(t) i 

F(ytyr$ set of Bore1 selectors of the map W(f -z), t 3 z 20. Set r(e) = r,(e), . . . , y,,(e)), 

* , * * * , W). 
&in; some Bore1 selector r(m) E r(t), we put 

4j(r,Zj,rjf’))= ~j~j(f)Zi + jyi(’ -Z)d7 (3.2) 
0 
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We now define the resolvent functions 

pi(t*r9ZiVU*Y:(‘))= 

= 

SUp[pL 0:~(f-‘5,U)-Yi(t-~)nCL(“i-Si(f~zi,ri(.)))+Q 

z E z;(t) 

,o,rE[OJl\q(r) 

Set 

and define a time 

(3.3) 

T(z,y(.))=min rZ=O:l- 
i 

inf max~~(r,z,z,v(5),y(.),a)dT~O 
u(.)EQv ad/ o 1 

(3.4) 

&2, = {+) : u(z) E V, z 2 0, U(T) is a measurable function}. 
If &(r, zi, r,(a)) tr Mi, the resolvent function p(r, 7, z, u, ‘y(.), a) is finite for any values of the 

arguments, and by Lemma 1 it is Bore1 with respect to V, z, t. Consequently, p(r, 2, z, V, r(.), a) 
is an integrable function in any finite interval. 

If an i exists such that at time r* we have &(r*, zi, y,(Q) Bible and ai +O, then p(r*, 2, z, v, 
“I(.), a) = +oo for any 2,-c. Using the fact that the integral of a function that equals +m in a finite 
interval is also equal to +oo, we deduce that inequality (3.4) is automatically true, so that 
r* = T(z, y(-)). 

4. MAIN THEOREM 

Theorem 1. Suppose that the conflict-controlled process (1.1) is in its initial state z” and that 
conditions 1 and 2 are satisfied; suppose, moreover, that Bore1 selectors yp(t -r), $(t -2) E 
ri(r), r a z r 0 exist, such that T(z’, y’(.)) <+oo. Then the trajectory of the process may be 
brought to the terminal set M at time T(z’, ~‘0). 

Proof. Put T(z’, y’(e)) = T. Let u(z) E Q,. 
Let us assume that &(T, z:, yjf)) 2Mi for all i= 1, 2, . . . , v. Define the test function as 

follows: 

Since a(T, 0, z”, u(a), y’(s)) = 1 and a(T, r, z”, u(e), y’(e)) is a continuous decreasing function 
of r, it follows from (3.4) that a time r. : 0 < r. s T exists such that a(T, r,, z”, u(.), y’()) = 0. 

We choose_,controls Qz), ~~(2) E Vi for r E [0, r.] as follows. 
1. Let z E A’+(T) n [0, r.]. 
Consider the multiple-valued map defined by 

Vi’(2,2))= (Ui EUi: ~::(T-z,ui,u)- 

-Y~(T-~)E~i(T,7,z~,~.yP(.))(Mi-5i(T,zi0,YQ(’)))J 

Remembering our assumptions about the parameters of the process (l.l), we may conclude 
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that x(T - 2, y, u) - yF(T - 2) is a Bore1 function of T and a continuous function of u,, and that 
the multiple-valued function 

is a Bore1 function of 2, V, since by Lemma 1 &(T, 7, Zp, ‘0, y:(e)) is an upper semi-continuous 
function of 2). 

By Lemma 3, Ui(z, U) is a Borei function of U, z. Starting from the multiple-valued map Ui(z, 
u) we consider the selector d(t, U) = lexminU:(z, u). 

By Lemma 4, r&z, u) is a Bore1 fuoction of 2, v. 
We now define the control 4(r) for z~&.(T’)~[O, &_f to be u,(i)= g(z, u(z)). Then, by 

Lemma 5, q(r) is measurable. 
2. Let 4 E d_(T). We form the multiple-valued map 

By condition 2 and Lemmas 2 and 3, Ui(z, u) is a non-empty Bore1 function of z and an 
upper semi-continuous function of u. 

Define r&r, u) = lexminUi(r, u) and define the control u,(r) for ‘5 E L?_(T) to be &(z, u(z))* 
As in case 1, one shows that r&r) is a measurable function of 2 for z E d’_(T). 
Put 

(4.1) 

It follows from (3.1) and (4.1) that 

By (4.2), a Bore1 selector &+,(T’--2) of the map H$(T- T). z E (T- t:k+l, T -r;f,,) exists, such 
that 
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For those i such that T E (t&+1, &+J, we have k = pi, . . . , 0. 
For those i such that T E (t&, f&+l), we have k = pi - 1, . . . , 0. 
Define h’(T - 2) = $,+,(T - 2) for all k. 
Thus, the function h’(T - 2) has been defined for all z E A!(f). We now form the multiple- 

valued map 

By Lemmas 2 and 3, Ul(z, u) is a Bore1 function of z and an upper semi-continuous function 
of U. 

Put &r, II) = lexminU~(r, u), and define the control u,(r) to be r&z, u(z)). 
By Lemmas 4 and 5, we see that q(z) is a measurable function of z for z E I,,. 
4. Let z E B+(T) n [r., T]. We form a multiple-valued map 

Define z&z, u) = lexminU~(z, u), and define the control y(z) to be z&q u(z)& 
As in case 3, one shows that ui(z) is a measurable function in the interval z E d+(T)n [r., TJ. 
By Cauchy’s formula 

Taking the definition of the control ui(z) for z E d_(T) and z E $(T) into account, we obtain 

T- ‘*+I 

3 
T-f' +I 

w(T - z, y(z), I+))& + 1 w(T - 2, ui(z), u(z))& = 0 (4.4) 
T-&t? T-G+, 

for all k = pi - 1, . . . , 0. 
For i such that T E (f~p,+l, t&+2) when k = pi, we obtain 

T-G +1 T-i; +, 

fK(T-7, Ui(z), u(z))dz+ (~(T-T, 4(z), U(Z))~Z=O 
0 T-&t, 

By the method of resolvent functions [3], we see that for z E a+(T) 

(4.5) 

w;:(T-z,ui(7),2)(9))-yP(r-~) ECli(T.~,z9,Y(~),YQ(‘))[Mi -~i(T*Z~vy~(‘))] (4.6) 

Taking into account that the functions 

are measurable with respect to 2, we deduce from (4.6) that 

Noting that yy(T - z) = 0 and pi(T, z, z:, V(T), $0) = 0 for z E [0, T]\ d+(T), and using (4.4) 
and (4.9, we can write (4.7) in the form 



The test function a(T, T, z”, UC), r(.)) vanishes by the definition of the controls ui(z), i.e. an 
index i, exists such that 

l-j,,, ‘F, z;, u(t), y;(.))dz =O. 
0 

(4.9) 

It follows from (3.2), (4.3), (4.8) and (4.9) that 

x&(T) E Mi, 

Let us consider the case when ch(T, zi, 7:(n)) E Mb for some number b. We then define the 
control u#), t+(z) E U,, z E [0, 7J as follows: 

It follows from (3.2) and (4.3) that in this case xazt(T) E Mb also. This proves the theorem. 

5. MODIFIED METHOD 

We shah now examine another approach to the solution of our problem. 
We introduce multi-valued maps 

ll((?, ‘5, I)) = fli@,(t - Z)rP,(Ui, U) - Wi(t, Z)M, 

W,(t, + nFVLf, %, u), o,(f, 2)%0, jol(t, z)dz=l 
l%V 0 

Condition 3. 

dom Wi(t, *)= 6d (k,f), for all I > 0, r E IO,r] 
k=O 

Define sets &(k, t) and &+(k, r) by the formulae 

(5.1) 

(5.2) 
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(5.3) 

Put ki(r) = max[k a 0 : fl_(k, t) + 01. 
Now set 

A[([)=‘$ $&I); A;(f)=4\1;+1 A;(k,t) 
k=O k=O 

Condition 4. Bore1 multi-valued maps Q(t, T), Qi : [0, +=I* A_(t) + K(L,) exist, such that 

1. n{w;l(t, 2, u)+Q(t, z))+0, for all zE&(t). 
UEV 

2. ]Q(t, z)dzc jq(t, z)dT, for all k= 0, . . . , ki(t), 
A& I) A% 1) 

Define the times 

i- 

t-z 
-i t 2k+l = m t =s t;,, : JQi<t, T)dz C JV(t> z)dz 

b(k, t) t-h+1 1 

Now set 

A&t) = 
[t - &+, ,t -&+&a t&+1 A;(t) = 

.(I) 

t A;(k,t) 
k=O 

P-9 

hr < dk+l 
ii;(t) = A’,(t)\ A;(r) 

Put 

Set 

rj(t) = yi(.): 
Yi(t*z) E y(t*‘c), 2 E k!(t), 
Yi(t.z)=o, TE[O,t]\A;(t), 

Y i C) is Bore1 

Si(t, Zi, Yi(*))= a@i(t)Zi +jyi(t, z)dz 

s”p[Pa 0:-&i(t91i;~i(.))E ~(t9Z,v)-yi(tv7) 
~j(tV~,Zi*U9yj(‘))= 

I 

T&.,(z, y(o)) = min 3 0 : 1- $f, zp]p(t, 2, z, u(z), ‘y(e), a)dz s 0 0 I 

Theorem 2. Suppose that the conflict-controlled process (1.1) is in state z” and that non- 
negative Bore1 functions o,(t, f), t a z 3 0, and Bore1 selectors yp(t, z) E ri(t) exist such that 
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T = TM.)(zo, Y’(*)) < +-J, jo,(T, z)dz = 1. 
0 

Then the trajectory of process (1.1) may be brought to the terminal set M at time T. 
The proof is analogous to that of Theorem 1. 

6. SPECIAL CASE 

Let us consider the special case in which ap,(u,, II) = u, - u, U, = pS, V = d, Mi = Es, ni = II. 
Put ci(f, Z*, O)=l+~(t)Zia 

Condition 5. A number p c +oa : p = min@ > 0 : &(t + j, zi) = &(t, zi), Vq E R”) exists. 

Condition 6. 

domK(r,T)= z A(k,t) ~~O,~E[O,II 
k=O 

Condition 7. 8 E [0, p] exists such that 0 E intco&(O, .q). 
Using analogues of formulae (5.2)-(5.4), we define sets 

A_(kt), A+(k,r), A&r) 

Let us write e,(t, zi) = (-&(t, zi))(ll &(f, zi II)-‘, provided that &(I, zi) f 0 

&+1(f)= j{o(t-hJo-.Wo(t, T))dz, k=k(t), . . . , 0. 

Set Q,,(t) = &+l(t)s. For q*k+l E Qzk+&), define functions 

Provided that (qZk+I, e,(t, zi)) s 0, we have 

Pi,+, (fl2k+l) = ((7 zktItei(t,ti))+?2k+~(t)-Il~12k+* -ej(t,zi)x 

x(r(2k+1,ei(~,zi))io(~t~i(~,zi)~~)-1, if (q2k+1,ei(fvzi))>0 

PZk+l (tl2k+l) = i, aiP:k+l (q2k+1) 

We form a multi-valued map 

Q(Z)={& OEilltCO~j(e,Zi)) 

By condition o(z) # 0. By condition 5, if 8, E e(z), then for all k = 0, 1, . . . , we have 
{O, +&I E e(r). 

Define resolvent functions by 
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For t E e(z), we write 

Finally, define a time T:)(z) = min(f 3 0; t E C3(z) : I,@, z) G 0). 

Theorem 3. Suppose that the conflict-controlled process (1.1) is in state z” and 
1. conditions 5 and 7 are satisfied, 
2. a non-negative Bore1 function ~(t, T), t a 2: b 0, exists such that conditions 6 and 4 are 

satisfied. 
Then the trajectory of the process may be brought to the terminal set M at a time T = T;)(z) 

such that 

The proof relies on that of Theorem 1. 

7. MODEL EXAMPLE 

Consider the ~nflict~ntroued process 

$+46’X,=q, x,,y~R”, IluiItcZa( II~}~~E 

j;+b2y=u 
(7.1) 

gang variables in this second-order system by z: = y-x,, 4 = x,, 4 = Y, we obk a system of tMx: 

(1.1) with 

ZiER4n"Zi."- 'I" . (Z~~Z~~Z~~E~)* 7Ei(Z~~Z~7Z~*z~)=Z~ 

After some calculations, we get 

W~t,7,2))=b-ic[rtsin2b(t-?flS-b-*u/sinb(f-~)1+~o(r,z)S,u~aS 

W(~,z)=(b~1u(lsin2b(r-~)l-~sinb(r-7)lf+~w(r,~))S 

&zi,Of= z~cos2EY-z~(2b)-1sin2br+z~(cos2br-cosbt)+z~(b)-1sinbf 

As the map Q(t, T> we take 

Condition 2 will hold with Q(f, z) if 

~(b-~~Osinlb(r-rd-isinb(r-r)l)+&~(~,?))d~~~ for all iZ=O (7.2) 
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This inequality and the definition (5.1) imply certain restrictions on E, depending on the time t. There 

are three possible cases 

1. f) 2n(3b)-‘; E 3 o(4b2)-’ 

W(f,T) = 
0, w[O,f-2x(3b)-‘]u(r-lr(2b)-‘,r] 

4b(lsinb(f-z)l-Isin2b(f-z)l), z~[1-2n(3b)-‘,r-a(2b)-‘] 

2. I E (z(B)-‘, 2x(36)-‘); E 2 (b)-%(-cots bf - cos* bt) 

a)(&?)= 
0, ?E(t-x(26)-‘.r] 

b(~sinb(r-r)hn2b(r-z)~)-(-cosbr-co~~bf)-~, z~[O,f-z(2b)-‘1 

3. t E (0, x(2@-‘); & P 0; (O(t, z) = (f)“. 

Theorem 3 implies that the time required to bring a trajectory of the process (1.1) to the terminal set, 
that is, T = Tot.,(z), is finite, provided condition 7 holds for the initial states of the process and the 

parameters T and E satisfy the above constraints. 
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